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Abstract
The present status of development of the density-functional-based tight-
binding (DFTB) method is reviewed. As a two-centre approach to density-
functional theory (DFT), it combines computational efficiency with reliability
and transferability. Utilizing a minimal-basis representation of Kohn–Sham
eigenstates and a superposition of optimized neutral-atom potentials and related
charge densities for constructing the effective many-atom potential, all integrals
are calculated within DFT. Self-consistency is included at the level of Mulliken
charges rather than by self-consistently iterating electronic spin densities and
effective potentials. Excited-state properties are accessible within the linear
response approach to time-dependent (TD) DFT. The coupling of electronic
and ionic degrees of freedom further allows us to follow the non-adiabatic
structure evolution via coupled electron–ion molecular dynamics in energetic
particle collisions and in the presence of ultrashort intense laser pulses. We
either briefly outline or give references describing examples of applications to
ground-state and excited-state properties. Addressing the scaling problems in
size and time generally and for biomolecular systems in particular, we describe
the implementation of the parallel ‘divide-and-conquer’ order-N method with
DFTB and the coupling of the DFTB approach as a quantum method with
molecular mechanics force fields.

1. Introduction

Considerable advances in the theoretical framework for studying the structure and properties of
materials have been achieved. Coupled with the advent of ever more powerful computers, this
has enabled the development of new algorithms for the computational modelling of materials.
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As the field of computational materials science develops and matures, the notion is becoming
established in the community that modelling efforts are an integral part of interdisciplinary
materials research.

Nowadays, besides common inorganic crystalline and amorphous solids (bulk, defects,
surfaces, adsorbates, interfaces), a broad variety of clusters, cluster-assembled matter,
fullerenes, nanotubes, organic molecular, polymeric, and biomolecular structures are also
considered. As the main goal, computational materials science is aiming to improve the atomic-
scale understanding of materials structures and properties. Structure–property correlations,
that are never resolved in experiments on a molecular level, are thus becoming quantified.
In this context, atomistic simulations begin to contribute to the optimization of materials
properties by allowing tailoring of structures and chemical compositions for a broad range of
applications.

At present, many advanced technological developments in nanoscale electronics,
optoelectronics, and photonics are based upon complex functionalization of inorganic
substrates with either self-assembled organic layers or biomolecular structures. A challenging
task in computational modelling is pushing the limits and addressing biomolecular systems in
their natural environment in order to study their function, e.g. the visual cascade in rhodopsin or
the photosynthetic activity in bacteriorhodopsin. The fundamental understanding of underlying
mechanisms will provide essential knowledge for improving on Nature and designing new
concepts for future technologies in molecular electronics, optical data, and energy storage.

In considering the growing complexity in materials research with the claim of broad
technological relevance, robust simulation methods have to combine transferability with high
computational efficiency. In turn, the sophistication of methods for determining complex
potential energy hypersurfaces of many-atom arrangements will crucially dictate the quality
of the simulated structures and the validity of physical and chemical data that can be used to
permit ‘handshaking’ with experiments. On the other hand, the complexity of the potential
energy surface determines the amount of computer time required. This will become particularly
important in the study of materials dynamics during growth processes and in coupling to strong
laser fields.

Today, empirically derived potentials [1–5] dominate in large-scale materials simulations
addressing problems of technological relevance. However, since they are adapted to a finite
set of equilibrium situations (mostly experimental data and ab initio results for equilibrium
configurations), they usually apply well to systems that are within the parametrization space,
but usually fail far from those. Additionally, they are not transferable to different chemical
situations and more generally to calculations of spectroscopic data relying quantitatively on
the detailed knowledge of the electronic structure.

In conclusion, for large-scale applications, a method based on quantum mechanics is highly
desirable. It should allow one to follow with confidence the structural dynamics during the time
evolution in chemical reactions and bond formation. The equilibrium configurations have to
be accurately described as regards details of the geometry, and cohesive and elastic properties,
including stability as well as vibrational dynamics. The method has to perform equally well for
very different types of material and inherently should yield electronic structure information
to enable comparison of theoretical with spectroscopic data. Furthermore, the predictive
quantum mechanical treatment of the complex many-atom structures, taking advantage of
reliable approximations, should be implemented efficiently for running on advanced computer
architectures. In this regard the number of atoms that at maximum might be included in
one system, the number of structures that are obtained for scanning configuration space, and
the time for which one can follow the structural evolution during pattern formation are key
factors. These are becoming even more crucial in cases where dynamic structure simulations
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involving energetic particle collisions or the presence of strong laser fields are considered.
Additionally, in order to meet the requirements for considering structure formation in organic
and biomolecular systems, in solution or e.g. in a natural protein environment, besides strongly
covalent and ionic bonding interactions, the weak chemical interactions of hydrogen bonding
and van der Waals type also need to be taken into account at an appropriate level.

Focusing now on electronic structure methods in materials simulations, the highest
accuracy is achieved by sophisticated ‘ab initio’ methods. These are post-Hartree–Fock [6]
and quantum Monte Carlo [7] methods which rely on a proper evaluation of many-particle
wavefunctions and the explicit inclusion of electronic exchange and correlation interactions.
However, due to their high computational demand, their scaling behaviour with increasing
particle number which is∝N(4−5) makes them hardly applicable to larger systems and complex
solids. By strongly reducing the configuration space for the setting up of wavefunctions,
today’s largest systems in such calculations reach a few dozen atoms. Consequently, in any
applications, model-like situations rather than technologically relevant ones are considered.

Considering larger molecular clusters or nanostructures and periodic solids in supercells
with 100–200 atoms, density-functional theory (DFT) [8,9] in the local density approximation
and with gradient corrections (LDA/GGA) for the exchange–correlation functional has proven
to be the method of choice in numerous successful applications for very different problems
and material types. In replacing the complex many-electron wavefunction by the electron
density, DFT transforms the solution of the electronic structure for a many-atom system into an
effective one-particle problem. Using common approximations for the exchange–correlation
functional, the self-consistent solution of the Kohn–Sham equation determines the effective
potential at which the electrons establish their ground-state density, simultaneously minimizing
the total energy of the system. High accuracy in such calculations will only be established
if the basis for representing the single-particle electron states has converged. Making use
of efficient molecular dynamics (MD) within plane-wave basis sets [10], unconstrained
simulated annealing studies are currently following structure formation, e.g. of amorphous
semiconductors in periodically arranged supercells of about 100 atoms over 1–2 ps [11].
These simulations usually generate single configurations with an extent, in terms of structural
evolution of the system in the ground state, that is orders of magnitude short of real processing
timescales.

To account also for excited-state dynamics and properties, DFT has been generalized to
incorporate TD external fields [12]. A quantum–classical Lagrangian ansatz for describing
the coupled electron–ion dynamics [13] here opens the way to performing non-adiabatic MD
simulations of structure formation, e.g. involving energetic collisions of particles and clusters,
or to studying the behaviour of complex materials interacting with strong laser fields. Since
under these circumstances the electron rather than the dynamics of the nuclei determines the
timescale for integration, the system sizes and time extent for simulations are even more
restricted.

For the foreseeable future the computational demands for describing structural, electronic,
and dynamical properties of large and complex materials with technologically relevant size,
simulation time, and statistics demand approximate solutions.

In this context, empirical tight-binding (TB) methods have been developed and used in
solid-state physics. Due to their conceptional simplicity, in most cases even neglecting self-
consistency, they more easily address the size problems; for a review, see e.g. [14]. There have
been numerous successful applications to a broad range of materials and systems [15–18].
Additional developments take advantage of the strongly localized character of electronic
interactions in the model (usually restricted to nearest neighbours only) and, together with
so-called order-N methods [19–21], provide techniques for simulating structures with several
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hundred or even thousand atoms over a short time. Although the TB approach is based on
quantum mechanics, it lacks reliability and transferability due to the parametrization of the
electronic Hamiltonian with respect to a finite set of equilibrium structures and properties.
Additionally, there is serious weakness in having no well-defined procedure for constructing
the required data from an atomic basis (wavefunctions and potentials) in a way which could
include any desired chemical element.

Therefore, during the last decade we have put a strong effort into the development of
approximate methods, which try to merge the spirit and reliability of DFT with the simplicity
and efficiency of TB ansatze. In keeping the computational cost but simultaneously also the
number of parameters as small as possible, the method described here and related computer
codes offer a high degree of transferability as well as universality for both ground-state and
excited-state properties. Thus we claim that the method operates at the same accuracy and
efficiency whether organic molecules or solids, clusters, insulators, semi-conductors and metals
or even biomolecular systems are investigated, and, furthermore, independent of the type of
atoms which constitute the material.

In the present article we will briefly outline the DFT foundation of the method, which
is introduced as the density-functional-based tight-binding (DFTB) approach in section 2.
In section 2.1, we describe a variational treatment of an approximate Kohn–Sham energy
functional given by a second-order perturbation expansion with respect to charge-density
fluctuations around a properly chosen reference density. In further applying well-balanced
simplifications, the variational minimization of the energy functional yields a modified Kohn–
Sham-like equation for determining the ground-state properties of many-atom structures,
in which the self-consistency in the effective potential and the charge density is replaced
by a much simpler self-consistency in the distribution of Mulliken charges. The method
includes special optimization of accuracy with respect to the use of a minimal basis set
for representing the single-electron Kohn–Sham-like eigenstates. The procedure described
allows one to predetermine the electronic interactions within a two-centre picture using an
effective Hamiltonian given at a properly chosen reference density. Inter-atomic forces for
adiabatic MD simulations are easily calculated analytically, which favours efficient total-
energy minimization of many-atom structures, such as nanostructured bulk, surface, or
molecular cluster systems in their ground state. While section 2.1 is focused entirely on
ground-state properties, a TD generalization of DFTB within a linear response formulation
of TDDFT is described in section 2.2. The approach described allows one to account
efficiently for excited-state properties and related optical spectra in molecular systems.
However, to describe processes such as those in ultrashort-time laser spectroscopy, the
correct description of the excitation process and following the structural dynamics in
the excited state requires a non-perturbative treatment of the radiation fields combined
with a direct numerical propagation of the TD electronic wavefunctions. This problem
will be addressed in section 2.3 where we describe a general TD quantum mechanical
treatment of laser-induced non-adiabatic structural dynamics on coupled ground-state and
excited-state potential energy surfaces. Finally, in section 2.4 details of the computational
realization of the method, the construction of the optimized reference density within the
minimal-basis description, and the introduction of the integral approximations used are
given.

Further, in order to meet the demands for simulations of organic and biomolecular systems,
we describe in section 3 as an additional development the incorporation of weak van der Waals
(vdW) forces using a London dispersion formula and the implementation of the divide-and-
conquer (DAC) linear scaling method for an efficient calculation of the electronic total energy
of large systems. In finally addressing the embedding of the quantum mechanically treated
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structures into a natural environment, we outline the coupling of the DFTB approach as a
quantum mechanical (QM) method to molecular mechanics (MM) via a QM/MM interface.

We further discuss in section 4 how theoretical data may provide ‘handshaking’ with
experimental measurements. This will include vibrational and optical spectra (IR), pump–
probe ultrashort-time laser spectroscopy, electron spin as well as nuclear magnetic resonance
data (EPR/NMR), scanning probe imaging (STM), electrical conductivity, and current–voltage
spectroscopy in molecular and semiconductor heterojunctions.

2. Method

2.1. Basic concepts of the density-functional-based tight-binding method

The Kohn–Sham total-energy expression of DFT in atomic units with the electron density
n = n↑(r) + n↓(r) and the magnetization density µ(r) = n↑(r)− n↓(r),

EDFT
tot =

∑
σ=↑,↓

occ∑
i

niσ

{
〈ψiσ |−∇

2

2
+ v +

1

2

∫
n(r′) d3r ′

|r − r′| |ψiσ 〉
}

+ Exc[n,µ] +
1

2

N∑
αβ

ZαZβ

|Rα −Rβ |︸ ︷︷ ︸
Eαβ

, (1)

is transformed by decomposing the electron density into a sum of a reference density and a
density fluctuation, n = n0 + δn. For brevity, n0(r), n(r), µ(r) and n0(r

′), n(r′), µ(r′) have
been replaced by n0, n, µ and n′0, n′, µ′, respectively. N is the number of atoms in the system
and v is the external potential.

By further expanding Exc[n,µ] around the reference densities n = n0 and µ = 0 up to
second order in the density fluctuations, we obtain [22, 23]

Etot =
∑
σ=↑,↓

occ∑
i

niσ 〈ψiσ | −∇
2

2
+ v +

∫
n′0 d3r ′

|r − r′| + Vxc[n0, 0]︸ ︷︷ ︸
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|ψiσ 〉

+
1

2

∫ ∫ (
1
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δ2Exc

δn δn′
|n0,0

)
δn δn′ d3r d3r ′

+
1

2

∫ ∫
δ2Exc

δµ δµ′
|n0,0δµ δµ

′ d3r d3r ′ + Eαβ + Exc[n0, 0]

−
∫
Vxc[n0, 0]n0 d3r − 1

2

∫ ∫
n0n
′
0

|r − r′| d
3r d3r ′. (2)

To derive the total energy within the DFTB approximation, the energy contributions in
equation (2) are further subjected to the following approximations:

(a) The Hamiltonian matrix elements 〈ψiσ |Ĥ 0|ψiσ 〉 are represented in a minimal basis of
optimized pseudo-atomic orbitals ϕµ; see section 2.4.1:

ψiσ =
∑
µ

cµiσ ϕµ(r −Rα). (3)

As Hamiltonian matrix elements H 0
µν in this basis, we take the atomic eigenvalues of

free spin-unpolarized atoms to account for the diagonal elements H 0
µµ and calculate the non-

diagonal elements H 0
µν within the two-centre approximation [23–25]:

H 0
µν = 〈ϕµ|T̂ + Veff [n

0
α + n0

β]|ϕν〉 µ ∈ α, ν ∈ β. (4)
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The H 0
µν are tabulated together with the overlap matrix elements Sµν with respect to the

interatomic distance Rαβ . Veff is the effective Kohn–Sham potential superposing the ionic,
Hartree and exchange–correlation contributions, where the n0

α,β are the densities of the neutral

pseudo-atoms α and β; T̂ is the kinetic energy operator.
(b) The charge-density fluctuations δn in the second term of equation (2) are written as a

superposition of atomic contributions δnα:

δn =
∑
α

δnα, (5)

which are approximated by monopolar charge fluctuations at the atoms α,�qα = qα − q0
α . q0

α

is the number of electrons of the neutral atom α and the qα are determined from a Mulliken
population analysis. The second-order term in δn of the energy, equation (2), can then be
approximated by

1

2

∫ ∫ (
1

|r − r′| +
δ2Exc

δn δn′

∣∣∣∣
n0,0

)
δn δn′ d3r d3r ′ ≈

∑
αβ

γαβ(|Rα −Rβ |)�qα �qβ. (6)

For α �= β, γαβ is determined analytically from the Coulomb interaction of two atom-centred
spherical charge distributions [22] located at Rα and Rβ . The on-site contributions γαα are
determined by spin-unpolarized atomic DFT calculations as second derivatives of the total atom
energy with respect to the charge and the occupation number, respectively; see section 2.4.2.

The terms discussed so far together with the double counting and ion–ion repulsion
contributions in the last line of equation (2) cover all electronic contributions which depend on
the reference density n0 and the density fluctuation δn. Neglecting at this stage the fluctuations
of the magnetization density δµ, this allows for a spin-unpolarized self-consistent treatment
of charge-transfer effects. This level of approximation, introduced as the self-consistent-
charge DFTB (SCC-DFTB) approximation in [22], has been successfully applied to a large
variety of problems, including organic molecules, semiconductor structures and biomolecular
systems [23, 26, 27].

(c) The third term in equation (2) is the only one that directly depends on the fluctuation
of the magnetization density. By expanding the magnetization density in non-overlapping
spherically symmetric functions fαl(|r−Rα|) centred on atom α and depending on the angular
momentum l:

µ(r) =
N∑
α

∑
l∈α
pαlfαl(|r −Rα|), (7)

this term can be transformed for local and semi-local density functionals into the expression

1

2

∫
δ2Exc

δµ2

∣∣∣∣
n0,0

δµ2 d3r ≈ 1

2

N∑
α

∑
l∈α

∑
l′∈α
pαlpαl′

∫
fαl
δ2Exc

δµ2

∣∣∣∣
n0,0

fαl′ d
3r

≈ 1

2

N∑
α

∑
l∈α

∑
l′∈α
pαlpαl′Wαll′ . (8)

After substituting in equation (7) for the magnetization density, the integration only involves
atomic quantities. Therefore, the integral in equation (8) can be approximated by a constant
Wαll′ which is specific for every atom type; see section 2.4.3. TheWαll′ are resolved with respect
to the angular momentum. This couples different angular momentum shells and is important,
e.g., for the calculation of hyperfine-coupling constants; see section 4.4. The parameters pαl
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in the series expansion are identified with the spin populations of the orbitals of each atom
which can be obtained from the Mulliken populations in the different spin states:

pαl = qαl↑ − qαl↓; qαlσ = 1

2

occ∑
i

niσ
∑
µ∈lα

N∑
ν

(c∗µiσ cνiσ Sµν + c∗νiσ cµiσ Sνµ). (9)

(d) Finally, the remaining ‘double-counting terms’ (see equation (2)) and the ion–ion
repulsion (Eαβ) are summarized into a short-range repulsive energy Erep =

∑
α �=β U [Rαβ],

consisting of atom-type specific pair potentialsU [Rαβ]. These are constructed as the difference
between the total energy versus distance calculated in DFT and the corresponding electronic
energy derived within the DFTB approach for properly chosen reference systems. For a detailed
discussion, see [23].

The total-energy expression in spin-polarized the DFTB (SDFTB) approach then takes
the form

ESDFTB
tot =

∑
σ=↑,↓

occ∑
i

niσ 〈ψiσ |Ĥ 0[n0]|ψiσ 〉 +
1

2

N∑
αβ

γαβ �qα �qβ

+
1

2

N∑
α

∑
l∈α

∑
l′∈α
pαlpαl′Wαll′ + Erep. (10)

Note that only the third term contains the spin dependencies. Variation of this approximate
Kohn–Sham energy expression with respect to the minimal basis yields single-particle ‘Kohn–
Sham-like’ equations:∑

ν

cνiσ (Hµνσ − εiσ Sµν) = 0 ∀µ, i, σ, (11)

where the Hamiltonian matrix elements are given by

Hµνσ = H 0
µν +

1

2
Sµν

N∑
ζ

(γαζ + γβζ )�qζ︸ ︷︷ ︸
H 1
µν

±1

2
Sµν

∑
l′′∈α
(Wαll′′ +Wαl′l′′)pαl′′ . (12)

The plus and minus signs correspond to the Hamiltonian for spin-up and spin-down electrons,
respectively. In our approximate theory, thus, the self-consistency with respect to the spin
densities in DFT has been replaced by a self-consistency in the spin populations. While net
charge fluctuations inH 1

µν upon self-consistent iteration are correcting both on-site and off-site
matrix elements, the spin-dependent corrections affect on-site matrix elements only.

Analytical interatomic forces easily can be calculated by differentiating the total energy
with respect to the nuclear coordinates:

Fασ = −
∑
i

niσ
∑
µ

∑
ν

c∗µiσ cνiσ

(
∂H 0

µν

∂Rα

−
(
εiσ −

H 1
µν

Sµν
±
∑
τ

Wτµpτ

)
∂Sµν

∂Rα

)

− �qα
∑
ζ

∂γαζ

∂Rα

�qζ − ∂Erep

∂Rα

. (13)

2.2. TB approach to time-dependent density-functional response theory (TDDFRT)

In order to describe also situations where electrons are excited due to applied time-dependent
fields, the original DFT formulation of Hohenberg and Kohn with its variational character has
to be extended. A rigorous foundation of what is called time-dependent DFT (TDDFT) was
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given by Runge and Gross, but not until the 1980s [28] (see [29] for a review). Similarly
to the ground-state formulation, Kohn–Sham equations can also be derived in TDDFT, if
one assumes the existence of a non-interacting reference system which possesses the same
(now time-dependent) density as the true interacting system at hand. These may be solved
in different ways. For low fluences of the external field, perturbation theory is applicable
and yields in principle exact (provided the correct XC functional is known) excitation
energies and oscillator strengths, i.e. the optical spectrum. The numerical effort required
in such calculations is much lower than that of competing electronic structure methods like
the correlated wavefunction [30, 31] or quasi-particle [32] approaches. At the same time,
even using standard ground-state XC functionals, high-accuracy results were obtained for
a wide range of different system classes including solids [33, 34], clusters [35, 36] and
molecules [37, 38].

In the above-mentioned perturbation theory approach [39,40], also called time-dependent
density-functional response theory, first an ordinary SCF calculation has to be performed.
This yields single-particle KS orbitals ψi and the corresponding KS energies εi . Note that we
consider only closed-shell systems. As is well known, simple energy differences of virtual and
occupied orbitals are a poor approximation to the true excitations of a system. Singlet energies
are strongly underestimated while the opposite is true for triplet states. Within TDDFRT this
failure is remedied via introduction of the so-called coupling matrix:

Kijσ,klτ =
∫ ∫

ψi(r)ψj (r
′)
(

1

|r − r′| +
δ2Exc

δnσ δn′τ

)
ψk(r)ψl(r

′) d3r d3r ′ (14)

(σ, τ are spin indices), which gives the response of the SCF potential with respect to a change
in the electronic density.

The true excitation energies (ωI ) are then found by solving the eigenvalue problem:∑
ijσ

[
ω2
ij δikδjlδστ + 2

√
ωijKijσ,klτ

√
ωkl
]F Iijσ = ω2

IF Iklτ , (15)

whereωij = εj−εi (i, k are occupied KS orbitals whereas j, l are unoccupied ones). Inspecting
equation (15), it is apparent that not only are individual single-particle excitationsωij corrected,
but also the couplings between different transitions (i → j, k → l) are properly taken into
account, which allows for the description of collective effects.

Since direct numerical evaluation of the coupling matrix would be computationally highly
demanding, we recently introduced the so-called γ -approximation to the coupling matrix
(equation (14)) [41]. Here the principal idea is to rewrite equation (14) in a way in which only
the LCAO coefficients (equation (3)) and known two-centre matrix elements are needed.

To do so, we first decompose the density of transition between different orbitals pij (r) =
ψi(r)ψj (r) into atom-centred contributions pij (r) = ∑

α p
ij
α (r). Analogously to the ideas

presented in section 2.1, thepijα are further subjected to a multipole expansion and a subsequent
monopole approximation:

pijα (r) ≈ qijα Fα(r), (16)

where qijα are the Mulliken atomic transition charges:

qijα =
1

2

∑
µ∈α

∑
ν

(cµic
∗
νjSµν + cνic

∗
µjSνµ). (17)

Like in section 2.1, it is useful to work in the set of variables n = n↑ + n↓ (the total density)
and µ = n↑ −n↓ (the magnetization). If the ground-state density is spin unpolarized, we have

δ2Exc

δnσ δn′τ
= δ

2Exc

δn δn′
+ (2δστ − 1)

δ2Exc

δµ δµ′
. (18)
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and the coupling matrix, equation (14), now takes the following form:

Kijσ,klτ =
∑
αβ

qijα q
kl
β (γ̃αβ + (2δστ − 1)µαβ), (19)

where

γ̃αβ =
∫ ∫ (

1

|r − r′| +
δ2Exc

δn δn′
|n,0
)
Fα(r)Fβ(r

′) d3r d3r ′, (20)

µαβ =
∫ ∫

δ2Exc

δµ δµ′

∣∣∣∣
n,0

Fα(r)Fβ(r
′) d3r d3r ′. (21)

Comparison of equations (20) and (6) shows that γ̃αβ and γαβ only differ in the actual density
entering the Exc-derivative. This difference could in principle be taken into account, but test
calculations show that for most covalently bound systems the influence of charge transfer
can safely be neglected, leading to γ̃αβ = γαβ . The same holds for the integral involving
the magnetization, equation (21), which we approximate to be on-site in accordance with
equation (8): µαβ = δαβWα . Note that in contrast to the case for equation (8), here the
magnetization parameterWα is not resolved according to angular momentum.

With these approximations, the coupling matrix, equation (19), can be easily constructed.
The excitation energies obtained from equation (15) and the required singlet oscillator strengths
can be calculated using [39]

f I = 2

3
ωI

∑
k=x,y,z

∣∣∣∣∑
ij

〈ψi |rk|ψj 〉
√
ωij

ωI
(F Iij↑ + F Iij↓)

∣∣∣∣2, (22)

where the transition dipole matrix elements are

〈ψi |r|ψj 〉 =
∑
α

Rαq
ij
α . (23)

The main features of the above-described γ -approximation may be summed up in the
following way. First, it is a parameter-free approach, i.e. no experimentally derived quantities
enter the scheme, leading to a high transferability. Second, it goes beyond the single-particle
picture, covering situations where electron–hole interaction is an important issue. Third, it can
in principle be used in conjunction with any TB scheme. Fourth, it is numerically efficient.

The last point stems from the fact that no explicit integral evaluations need to be performed
during the run time of the program. Together with the employment of a minimal basis this leads
to a substantial speeding up compared to full TDDFRT calculations as shown in figure 1. For
very large systems, the bottleneck is the solution of the eigenvalue problem in equation (15).
In these cases one should take advantage of the sparsity of the coupling matrix or use iterative
techniques to further reduce the computational effort.

Of course, even the fastest method is of no use if it yields qualitatively wrong results. The
performance of the γ -approximation has therefore been studied in detail in [41] and [43]. A
short summary will be reported in section 4, presenting also some new results for sulphur–
organic compounds.

2.3. Time-dependent generalization of the DFTB approach

In the last section we have shown that TDDFT can be used to calculate optical spectra in the
regime of linear response. For high intensities of the applied fields, which are easily obtained
from today’s subpicosecond laser sources, however, this perturbation theory breaks down and
one is left with the complicated task of solving the TD-KS equations exactly. This can be
done numerically, but the time step of such a solution has to fall into the range of the electron
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Figure 1. Comparison of CPU usage for different methods including the quantum chemical
INDO/S [42] approach as well as TDDFRT with different basis sets. Shown is the total CPU
time in seconds for the complete set of organic molecules from [41]. The calculations have been
performed on a single node of the HP Exemplar V-Class system; for details see [41, 43].

dynamics timescale. This is in contrast to the case for standard quantum MD simulations where
the timescale is set by the much slower nuclei. Consequently, first-principles approaches are
limited to very short simulation times [44] or extremely small system sizes [45]. To overcome
these limits, we show in this section how the typical DFTB approximations can also be used
in a time-dependent framework.

For simulating the coupled motion of ions and electrons in the presence of strong laser
fields, we use as starting point the following quantum–classical Lagrangian [43, 46]:

L =
∑
α

1
2MαṘ

2
α −

∑
i

ni〈0i(t)|H(t)− i(
←→
d/dt)|0i(t)〉 − EDC − Eαβ, (24)

where the symbol ↔ stands for a symmetrized derivative, H represents the common DFT
Hamiltonian, which may explicitly depend on time due to external fields, and the double-
counting contributions EDC:

EDC = −1

2

∫ ∫
n(r, t)n(r′, t)
|r − r′| d3r d3r ′ + Exc[n]−

∫
Vxc[n]n(r, t) d3r. (25)

The first term in equation (24) is the kinetic energy of the ions, which are treated classically.
The following terms can be easily derived from the TDDFT action functional in the Kohn–
Sham representation, if one assumes that the XC contributions are local in time (see [29] for
details).

In order to derive an efficient numerical scheme, we again make use of an expansion of
equation (24) with respect to small density fluctuations δn around a suitable reference density
n0, n = n0 +δn, described in section 2.1 for the time-independent formulation of DFTB theory.
The result up to second order reads

L(|0i〉,Rα) =
∑
α

1
2MαṘ

2
α −

∑
i

ni〈0i |H [n0]− i(
←→
d/dt)|0i〉 − Erep + O(δn2). (26)

In contrast to our approach in earlier sections, here we do not take the second-order
contributions into account. This was found to be a good approximation for systems with
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little charge transfer such as homonuclear clusters (see also [43] for a more detailed discussion
of this point). However, to cover a broader range of systems, the next term in the expansion in
equation (26) has also to be included, which results in a numerically complex scheme. Efforts
to address this task are currently under way.

Requiring the action
∫ L dt of equation (26) to be stationary with respect to variations in Rα

andψj finally leads to coupled equations of motion for electrons and ions. After expanding the
TD Kohn–Sham orbitals in our LCAO basis (section 2.4.1)0i(t) =

∑
µ b

i
µ(t)ϕµ(r−Rα(t)),

they read

ḃνi(t) = −
∑
µγ

(S−1)νγ

[
iHγµ +

〈
φγ

∣∣∣∣ d

dt
φµ

〉]
bµi

Fα = −
∑
iµνγ δ

nib
i∗
µ b

i
ν

{
dHµν
dRα

−
〈

dφµ
dRα

∣∣∣∣φγ
〉
S−1
γ δ Hδν −Hµγ S−1

γ δ

〈
φδ

∣∣∣∣ dφν
dRα

〉}
− dErep

dRα

.

(27)

These are the time-dependent Kohn–Sham (TD-KS) equations of DFTB theory in the
LCAO basis representation, explicitly accounting for the time propagation of the Kohn–Sham
eigenstates in coupling to the motion of the atomic framework, and a generalized Ehrenfest
theorem giving the forces on the nuclei. Both equations clearly represent a non-adiabatic
approach to MD, accounting for complex coupling of ground-state and excited-state potential
energy surfaces.

The derivation given here provides an extension to two earlier contributions to this field.
Equations of motion which are similar to equation (27) were given by Graves and Allen for an
empirical orthogonal TB scheme [47, 48] and by Saalmann and Schmidt [50] for the special
case of not explicitly TD Hamiltonians.

Recently Todorov showed [49] that for an incomplete basis set the force equation (27)
has to be augmented by additional terms. These corrections contain the nuclear velocities
and should become important e.g. in the simulation of high energy collisions. Interestingly,
neglect of the force corrections does not affect the conservation of energy, but the conservation
of momentum of the combined system of electrons and nuclei.

Up to now, we did not specify how the external radiation field is included in the
Hamiltonian. This is done via minimal coupling (p → p − (e/c)A), where A is the vector
potential. Following Graf and Vogl [51], the TD Hamiltonian may be rewritten as

H

(
r,p− e

c
A(r, t)

)
= exp

[
ie

h̄c

∫ r

A(s, t) ds

]
H(r,p) exp

[
− ie

h̄c

∫ r

A(s, t) ds

]
. (28)

Here ∫ r

A(s, t) ds (29)

denotes a line integral over the vector potential. For wavelengths in the optical range, the
vector potential is essentially constant over molecular dimensions. Taking advantage of this, the
matrix elements ofH(r,p−(e/c)A(r, t)) in the LCAO basis can be related to the unperturbed
ones, equation (4), known already:

Hµν(t) = exp

[
ie

h̄c
(Rα −Rβ)A(t)

]
H 0
µν µ ∈ α, ν ∈ β. (30)

Equation (30) is in principle valid for arbitrarily strong TD fields, consistent with the two-centre
approximation and explicitly respects gauge invariance.

Finally, to solve the coupled equations of motion, equation (27), we use the velocity Verlet
algorithm for the force equation, and a new algorithm based on the Cayley representation [52]
to integrate the TD-KS equations [43].
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As an illustrative application of the method, we briefly report in section 4 results on the
vibrational excitation of buckminsterfullerene C60 due to femtosecond laser pulses.

2.4. Practical realization

2.4.1. LCAO basis and atomic reference density. The pseudo-atomic basis functions |ϕµ〉
are Slater-type atomic orbitals:

ϕµ(r) =
∑
ζ

∑
i

(aζ ir
l+i )e−ζ rYlm

(
r

r

)
, (31)

where l andm are the angular momentum and the magnetic quantum numbers associated with
the orbital µ, respectively. Extensive tests have shown that five different values of ζ and
i = 0, 1, 2, 3 form a sufficiently accurate basis set [53].

With this basis set we solve the Kohn–Sham equation for a spherically symmetric spin-
unpolarized neutral atom self-consistently:[

T̂ + V at
eff(r) +

(
r

r0

)2]
ϕµ(r) = εµϕµ(r). (32)

Here a harmonic contraction potential (r/r0)2 has been added, as introduced by Eschrig [53,54],
to form a more efficient basis set for molecular and solid-state systems. The parameter r0 is
chosen to be about 1.85 times the atomic covalent radius [23] and V at

eff is the effective pseudo-
atomic potential.

From this procedure we obtain for each atom type optimized atomic basis sets {ϕµ}µ
and atomic densities n0

α which are used to calculate the matrix elements of the zeroth-order
Hamiltonian H 0

µν in a two-centre approximation, as discussed in section 2.1.

2.4.2. Determination of γαα . The total-energy expression of SDFTB reads in the atomic case

ESDFTB
at =

∑
σ=↑,↓

occ∑
i

niσ εi + 1
2γαα �q

2 +
1

2

∑
l

∑
l′
plpl′Wll′ . (33)

In SDFTB the electron density n(r) is approximated by the Mulliken populations q.
Differentiating equation (33) twice yields then

∂2ESDFTB
at

∂n2
≈ ∂

2ESDFTB
at

∂q2
= γαα. (34)

To obtain the atomic constant γαα , we also differentiate the atomic total-energy expression
of DFT. Under the assumption of fixed orbital shapes, the derivative with respect to the density
can be reduced to a derivative with respect to the occupation numbers ni . Using Janak’s
theorem [55] yields

∂2EDFT
at

∂n2
≈ ∂

2EDFT
at

∂n2
i

= ∂εi
∂ni
. (35)

In the case where i is the highest occupied molecular orbital (HOMO), the derivative
∂εHOMO/∂nHOMO is associated with the Hubbard U of atom type α, Uα , which in turn
is associated with the ionization potential Iα and the electron affinity Aα of the atom,
Uα ≈ Iα − Aα .

Requiring equality of the results of equations (34) and (35), we have the identity

γαα = ∂εHOMO

∂nHOMO
= Uα. (36)

By the construction of the expression γαβ , the atomic Hubbard Us also enter in the
interatomic contributions [22].
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2.4.3. Determination of Wαll′ . The universal atomic constants Wαll′ can be calculated for
free atoms by taking second derivatives of the DFT and SDFTB total-energy expressions with
respect to the magnetization density.

Within SDFTB theory the magnetization density is approximated by Mulliken spin
populations; see equation (7). Differentiation of the total-energy expression in the atomic
case, equation (33), leads then to the equation

∂2ESDFTB
at

∂µl ∂µl′
≈ ∂

2ESDFTB
at

∂pl ∂pl′
= Wll′ (37)

for the universal constantWll′ of an atom α of a specific type.
In the DFT case one obtains by applying Janak’s theorem [55]

∂2EDFT
at

∂µl ∂µl′
≈ 1

4

(
∂εl↑
∂nl′↑

− ∂εl↑
∂nl′↓

− ∂εl↓
∂nl′↑

+
∂εl↓
∂nl′↓

)
= 1

2

(
∂εl↑
∂nl′↑

− ∂εl↑
∂nl′↓

)
, (38)

where the relations nl↑ = 1
2 (nl − µl) and nl↓ = 1

2 (nl + µl), assuming fixed orbital shapes,
have been used. Then the εl↑ and εl↓ are the Kohn–Sham eigenvalues while the nl↑ and nl↓
are the occupation numbers. The rightmost part is obtained via symmetry constraints imposed
by the reference point of the spin-unpolarized atom.

Finally, we have, under the requirement that the results of equation (37) and equation (38)
are equal,

Wll′ = 1

2

(
∂εl↑
∂nl′↑

− ∂εl↑
∂nl′↓

)
. (39)

TheWll′ can now be calculated for every atom type.

3. Large systems

Although the DFTB approach is about 2–3 orders of magnitude faster than the DFT one,
the limits of modern computers are reached when considering long MD simulation times of
more than several 100 ps and/or large systems containing more than 500 atoms. In principle,
there are three strategies for going beyond these thresholds: parallelization, linear scaling
algorithms and combination of different methods. All three approaches have their merits and
also combinations are possible. Which one to choose depends on the special problem of
interest.

3.1. Parallelization

The problems described by equations (9)–(11) and (13) scale withN3, whereN is the number
of basis functions, and are therefore computationally expensive. These equations can be
implemented in a straightforward manner for parallel machines. Advantage can be taken by
the use of special linear algebra packages (Scalapack, PBLAS) which optimize data transport
between processors in parallel computers [56–59]. For details, see [26].

3.2. O(N) methods

The computational cost of the SCC-DFTB method is determined by the diagonalization of
the Hamiltonian matrix, which exhibits O(N3) (cubic) scaling with increasing system size N .
Linear scaling (O(N ) scaling) can be achieved by circumventing the matrix diagonalization
in the solution of the generalized eigenvalue problem. In the last decade, there have been
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several proposals for a realization of an O(N )-like scaling. For a more detailed discussion of
the different approaches, see e.g. [60–63] and [64].

A simple O(N ) approach was introduced by Yang with the so-called DAC scheme [65, 66].
The algorithm was then simplified by Yang and Lee introducing a density matrix
formulation [66]. For systems where the density matrix is localized in real space, it
can be constructed from local contributions. Practically, the system of interest is divided
into subsystems, and the total density matrix is projected onto the density matrices of the
subsystems. The eigenvalue problems of the subsystems are solved separately instead of
solving the problem for the total system. The occupation numbers of the orbitals of the
subsystems are then determined on the basis of the Fermi energy in order to obtain the total
number of electrons of the entire system. For large systems, the size of the subsystems is
independent of the total system size, and the number of subsystems increases linearly with the
overall system size, which leads to the desired O(N ) scaling. Recently, the DFTB method has
been implemented in the DAC algorithm [67,68]. For small systems, the DAC-DFTB method
is computationally more expensive than the conventional diagonalization; it becomes more
efficient only at a certain ‘crossover’ point. For biological systems like peptides and proteins,
which consist dominantly of O, N and C atoms and about 40% hydrogen atoms, this crossover
point is reached for system sizes of roughly 200 atoms (all atoms described in the DFTB
minimal basis). As a first benchmark, we considered the crambin protein, which contains 639
atoms. Using conventional diagonalization techniques, the evaluation of an energy gradient
takes about 15 min on a DEC Alpha EV6 machine, whereas the DAC method needs about
1 min for the same task. Therefore, a complete geometry optimization of this molecule
can be performed a few several hours of laboratory clock time. However, the structures of
biological molecules are seldom of interest under dry conditions. Further, to address questions
about conformational stability and dynamics of macromolecular structures, simple geometry
optimizations are of no further use and MD trajectories on the nanosecond timescale have to
be evaluated. To achieve long MD trajectories including a large number of water molecules to
account for solvation, further technical improvements have to be implemented.

3.3. QM/MM

Another route to large systems consists in the combination of a quantum mechanical method
with an empirical force field. The idea behind the combined quantum mechanics/molecular
mechanics (QM/MM) force-field methods is to describe a part of the molecule quantum
mechanically and the rest of the system within the computationally much faster empirical
force-field approach.

In this approach, the total energy is usually written as

Etot = EQM + EMM + EQM−MM, (40)

where EQM is the energy of the QM part of the subsystem, represented by the SCC-DFTB
energy (equation (10)), EMM is the energy of the MM subsystem, given by the energy function
of the empirical force field, and EQM−MM describes the coupling of the two subsystems.

If the boundary of the QM and MM regions intersects a covalent bond, the combination
of these methods is not straightforward. Several suggestions have been made as regards how
to tackle this problem. A popular approach is the so-called link-atom approach, where the
quantum system is saturated with a fictitious atom for the QM calculation only, while the bond
across the QM/MM boundary is modelled by the bonding interaction of the empirical force
field. QM/MM approaches have been reviewed recently [69, 70], and we will not discuss
details of their implementation. We will just present the main ideas for the SCC-DFTB/MM
coupling [71, 72].
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EQM−MM consists of Coulomb and vdW interactions between the two subsystems. The
vdW interaction is modelled by the interaction terms present in the empirical force-field
method, while the Coulomb term is approximated by the interactions of the point charges
between the subsystems, where the QM charges are given by the Mulliken charges�qα of the
SCC-DFTB method:

EQM−MM = −
∑

αεQM,βεMM

�qα Qβ

Rαβ
+ EvdW. (41)

The total energy is

Etot = EQM + EMM −
∑

αεQM,βεMM

�qα Qβ

Rαβ
+ EvdW. (42)

We have tested this method extensively for H-bonded compounds, where one molecule is
treated quantum mechanically and the other is treated with the force-field method. The results
are very promising: geometries and energies compare well with higher-level calculations and
the relative ordering of the energies of several conformers is well reproduced [72]. Also
proton-transfer barriers have been investigated in detail within the QM/MM framework for
triosephosphate isomerase (TIM) enzyme [73]. The results have been compared with full DFT
calculations from a previous study on this system and have been found to be in an excellent
agreement. Further, QM/MM MD simulations have been performed to study the stability of
protein alpha helices in aqueous solution. For this purpose, the peptides have been treated
within QM, while the water molecules were simulated within the MM framework.

3.4. Parallel O(N ) QM/MM method

In order to simulate the crambin protein in aqueous solution over a longer timescale, we
combined the O(N ) algorithm with the QM/MM methodology, where the crambin molecule
can be treated within QM, and the solvent water molecules within MM [67]. This allows one
to centre the protein in a cubic box, surrounded by about 2400 water molecules.

On a DEC Alpha machine, a picosecond of dynamics would take about a day run time.
We therefore used a parallel version of the DAC QM/MM method, where we were able to
achieve about 10 ps dynamics per day using 16 processors of an IBM-SP3 machine. In total,
a simulation for 350 ps has been performed. The high-resolution crystal structure was better
reproduced than in similar simulations using empirical force fields for the whole system, i.e.
for crambin and the solvent. In particular, some non-local charge transfer between the termini
of the protein has been found; this is excluded by construction in pure empirical force-field
simulations.

4. Properties

4.1. Vibrational spectra

For the calculation of vibrational spectra of molecules and solids within the harmonic
approximation, the dynamical matrix is needed, i.e. the second derivatives of the total energy
with respect to the atomic coordinates (Rα): ∂2E/∂Rα ∂Rβ . Within the DFTB method the
forces on the atoms (−∂E/∂Rα) can be calculated analytically (equation (13)), whereas an
analytical calculation of the second derivatives of the energy is more involved. Therefore
the dynamical matrix is calculated numerically by means of finite differences of the forces.
Diagonalization of the dynamical matrix gives then the vibrational eigenmodes (ωi) and the
corresponding eigenvectors. The intensities of infrared (IR) spectra (Ii) of the vibrational
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eigenmodes (ωi) can be obtained from the derivative of the calculated dipole moment (µ) with
respect to the corresponding normal coordinate (Qi): Ii ∼ |dµ/dQi |2. For Raman intensities
(IRaman) the derivative of the polarizability (α) is required: IRaman ∼ |dα/dQi |2. Up to now,
we used a bond polarization model for the calculations of the polarizabilities as originally
proposed by Snoke and Cardona [74].

We have tested frequencies of a series of 33 O, N, C and H containing organic
molecules yielding about 6% mean absolute deviation of vibrational frequencies from the
experiment [71]. On average, bond-stretching frequencies are slightly overestimated with
respect to experiment [25]. The largest errors occur in the low-frequency range, implying
that torsional barriers are not described with the same accuracy as bond-stretching potentials.
Similar results have been found for sulphur-containing molecules [75].

Placing special emphasis on the spectra of fullerene derivatives, we have contributed
with these calculations to the identification of the structural oligomer patterns of such
systems [25, 76–78].

Recently, we also studied the vibrational frequencies and IR and VCD intensities of
NA-LA-NMA with the SCC-DFTB method, in comparison with HF, B3LYP and MP2
calculations [79]. In [79], we have calculated the IR and VCD intensities at the HF, DFT
and MP2 levels of theory. To estimate the intensities at the SCC-DFTB level, we used an
SCC-DFTB-DFT hybrid approach. Ground-state geometries and second energy derivatives
have been calculated with SCC-DFTB theory and the dipole derivatives and VCD tensors
at the B3LYP level of theory in the SCC-DFTB geometry. The SCC-DFTB vibrational
frequencies have been shown to agree very well with those of the higher-level calculations,
and the intensities estimated with the hybrid approach compare satisfactorily with those of the
higher-level calculations [79] for the two conformers investigated, Ceq

7 and Cext
5 .

This good agreement motivated us to calculate the IR intensities fully at the SCC-DFTB
level of theory. We used the derivatives of the SCC-DFTB dipole moments with respect to
the atomic coordinates as an approximate way to calculate the IR intensities [27]. The dipole
moments are calculated from Mulliken charges, which neglects the intra-atomic charge-density
distribution but is computationally very efficient. The spectra are reproduced only qualitatively
in this way, but the errors follow a certain trend. The high-intensity modes are overestimated
in their intensity compared to the low-intensity modes. A scaling of intensities according to
their amount leads to a good agreement with the more sophisticated calculations [27].

Besides in the calculations of IR and Raman spectra of molecular systems, the DFTB
method has also been applied for the calculation of the vibrational (phonon) spectra of
crystalline and amorphous solids and solid surfaces [80, 81]. For instance, the structure and
elastic properties of amorphous silicon carbon nitride films, depending on their carbon content,
have been studied in detail [82]. These amorphous films were deposited by ion-beam sputtering
in such a way that a graphite sheet covered with a smaller silicon wafer at the centre was
further covered by a smaller SiC film and was used as the target for a N+

2 beam with a 45◦

angle of incidence. By adjusting the sputter target and the N+
2 beam voltage, films of different

compositions and carbon contents were deposited on Si(100) and fused silica substrates. In
this study, besides various other experimental methods for the determination of the structural
properties and chemical bonding conditions, Fourier-transform infrared (FTIR) spectroscopy
has been applied to obtain the IR intensities to investigate these films.

To model the a-SiCxNy films, MD simulations for 224–240 atoms enclosed within a simple
cubic periodic supercell with fixed volume according to the mass density and with the same
compositions of Si, C and N as the sputtered films have been performed. To simulate the
experimental situation as closely as possible, the initial structures for the MD simulation were
arranged corresponding to the adjustment of the sputter target described before. Therefore,
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Figure 2. IR spectra obtained experimentally (dashed line) and by MD simulation (solid line)
for amorphous (a) Si47N53, (b) Si42C24N34 and (c) Si9C69N22. The simulated spectra consist of
overlapping delta peaks which are also shown. These were Gaussian broadened for adjustment to
the experimental conditions of the FTIR spectroscopy [82].

for example, the nitrogen atoms were inserted randomly, simulating the N+
2 beam. As the MD

regime for the structure formation, the initial structures were first heated from 300 to 4000 K
in 1 ps with linearly increasing temperature. Then, they were equilibrated for 1 ps at 4000 K
and after that cooled down to 300 K in 1 ps. Finally, the models were equilibrated at 300 K
for another picosecond and then relaxed with a conjugate gradient algorithm.

The experimental and calculated IR spectra of three of these amorphous films are shown
in figure 2. From the calculations, delta peaks were obtained for the IR intensities. These have
been Gaussian broadened to adapt to the experimental conditions of the FTIP spectroscopy
for better comparison. One can see that, except at wavenumbers below 700 cm−1, where the
sensitivity of the detector used in the experimental FTIR investigation is low, the broadened
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theoretical and the experimental spectra show a reasonable agreement as regards peak positions
and relative peak heights. The double peak at 2350 cm−1 that is only present in the experimental
IR spectra is due to CO2 absorption in the ambient air, and is therefore not characteristic
for the films. With the calculation of the spectra and a detailed geometrical analysis of the
MD models, it has been possible to provide detailed information about the chemical bonding
situation. Therefrom, it could be seen that with increasing carbon content the formation of
C=C, C=N, C≡C and C≡N bonds increases together with a decrease of the total coordination
number of silicon and carbon. Thus, it could be shown that this formation of double and triple
bonds together with an increasing number of terminating nitrogen atoms upon increase of the
carbon content are responsible for the degradation of the sp3 network of the material, and
therefore for a lower Young’s modulus and density.

It should also be mentioned that the DFTB method allows one to calculate vibrational
spectra (vibrational density of states f (ω)) beyond the harmonic approximation via a Fourier
transformation of the velocity autocorrelation function (C(t)), obtained from MD simulations:

C(t) =
∑M
k 〈vk(t)vk(0)〉∑M
k 〈vk(0)vk(0)〉

, (43)

where vk(t) is the velocity of the kth atom at time t ,M is the number of atoms in the system:

f (ω) = 1

2π

∫ ∞
0
C(t) exp(iωt) dt. (44)

Such treatment has been applied e.g. for the interpretation of vibrational spectra of endohedral
fullerenes [83].

4.2. Optical spectroscopy

Test calculations for optical excitation energies and related spectra on a set of small organic
molecules showed a good agreement of calculations within the γ -approximation (section 2.2)
with full TDDFRT calculations for low-lying singlet states, where mean absolute errors of
0.38 and 0.36 eV, respectively, were found with respect to experiment. The results for triplet
excitations were less convincing. We obtained an error of 0.64 eV for our approach, while
TDDFRT performed much better giving an error of 0.37 eV. However, general trends like
chain-length-induced red-shifts in polyenes are correctly described for both types of excitation.
This is reflected in figure 3 where results for the polyacene series (C4n+2H2n+4) are shown in
comparison with TDDFRT and experimental values.

As a further test of our method we calculated the absorption spectrum of several sulphur–
organic compounds. These systems, among them in particular the thiophene-based materials,
are becoming of increasing technological importance since they combine ease of processibility
with tunable optical properties and high quantum yield.

An overview of the results is given in figure 4 where all the excitations calculated have been
accumulated in one correlation plot together with results obtained by Fabian [38] for TDDFRT
and the INDO/S method. As in the case of pure organic systems, the γ -approximation shows a
balanced performance over the whole test set close to the accuracy of the more time-demanding
TDDFRT scheme. This transferability over different bonding situations can be traced back to
the neglect of empirical parameters. In contrast, the parametrized INDO/S method, although
very precise for most of the compounds, fails for some of the transitions with errors as high as
1.97 eV.
4 Calculations were performed for the following molecules: thioacetone, 3-methylthiocyclopentenone,
thiobenzaldehyde, 1, 2-dithiole-3-thione, thiophene, benzthiet, thiophenol, cyclopenta[c]thiapyran, 1-thiaphenalene,
1, 2-dithiin, 1, 2-dithiane, naphtho[1, 8-cd]dithiol, 3, 4-dimethylenethiophene, thiosulphine and thiophene S-dioxide.
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Figure 3. Comparison of the lowest singlet and triplet as well as the most intense singlet excitation
energy for the polyacenes as obtained from the γ -approximation, TDDFRT with a LDA XC
functional and experiment. The values for the latter two were taken from [84].
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Figure 4. A correlation plot of calculated singlet excitation energies of several sulphur-containing
molecules4 versus experiment. The TDDFRT and INDO/S results as well as the experimental
values were taken from [38].

4.3. Pump–probe ultrashort-time spectroscopy

With the advent of subpicosecond laser sources it became possible to time resolve the dynamics
of systems on very short timescales, supplementing the information conventional optical
spectroscopy can provide us with. Strongly localized in time, these short pulses exhibit a
broad frequency spectrum which leads to a coherent excitation of many vibrational states.
This effect is manifested in quantum beats of the reflectivity or transmission, which may
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Figure 5. The result of a MD simulation of C60. The cluster was subjected to a Gaussian-shaped
pulse of 12 fs duration with a carrier frequency of 2 eV/h̄ and a vector potential of 1.13 G cm. After
the end of the pulse the simulation was continued for 1 ps. Shown here is the Fourier transform
of the velocity autocorrelation which was calculated from the sampled data. For details, see [43].
The peak at ≈500 1 cm−1 corresponds to the breathing mode of the cluster, while the one at
≈1600 1 cm−1 is identified as the pentagonal pinch mode.

be resolved with a pump–probe experimental set-up. Interestingly, only totally symmetric
modes are observed under usual experimental conditions [85]. This holds also for C60, where
according to Dexheimer et al [86] irradiation of the sample with a 12 fs pulse centred at 2 eV
leads to a dominant excitation of the two Ag modes of the molecule. This finding agrees
very well with simulations that we performed on this system (see figure 5). However, for a
lower fluence of the exciting pulse we obtain a much richer pattern (figure 6). Now, modes
of lower symmetry also appear and the spectrum closely resembles the one obtained from
Raman measurements, where the pentagonal pinch mode is much stronger than the breathing
mode [87]. According to analytical theories [85, 88] it is expected that only those vibrations
which possess a long period compared to the duration of the pulse are impulsively excited.
This prediction is confirmed by our calculations. In figure 7, results of a simulation with same
fluence as in figure 5 but doubled pulse duration show a diminishing of the high-frequency
pentagonal pinch mode. To sum up, just by changing one of the parameters of the pulse,
the vibrational excitation is radically changed, which may be viewed as another example of
coherent control.

4.4. Electron paramagnetic resonance, EPR

In the general LCAO case the isotropic hyperfine-coupling constants (hfccs) can be calculated
from the expression [89]

a
(N)
iso =

4π

3
gβγNh̄〈Sz〉−1

∑
µν

ρµν〈ϕµ(r −Rα)|δ(r −RN)|ϕν(r −Rβ)〉. (45)
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Figure 6. Spectral density from a simulation with same pulse parameters as in figure 5 apart from
the vector potential which was 0.08 G cm in this case.
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Figure 7. Spectral density from a simulation with the same fluence as in figure 5 but doubled pulse
duration.

β, γN and g are the Bohr magneton, the gyromagnetic ratio of nucleus N and the electronic
g-factor of the free electron, respectively, and 〈Sz〉 is the expectation value of the spin
operator Sz. The expression 〈ϕµ(r − Rα)|δ(r − RN)|ϕν(r − Rβ)〉 gives the density of
the basis functions at the nucleus N and is associated with the spin-density matrix element
ρµν =

∑occ
i (ni↑c

↑
µic
↑
νi − ni↓c↓µic↓νi).
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Table 1. Isotropic hfccs (mT) of a stilbene radical anion; for the atom labels see figure 9. In
this case the AM1 optimized geometry was used [91]. Reproduced with permission of the PCCP
Owner Societies.

Number Experiment [96] DFT calculation [96] SDFTB calculation

1 −0.26 −0.22 −0.22
2 0.08 0.06 0.02
3 −0.38 −0.36 −0.36
4 0.04 0.02 0.02
5 −0.21 −0.18 −0.22
6a 0.66 0.70 0.61
6b 0.29 0.28 0.31
7 −0.04 −0.02 0.01

In our approximation the isotropic hfccs are calculated from the spin-density matrix
elements ρN

ss of the s-functions centred on a particular atom N:

a
(N)
iso = 〈Sz〉−1

(
4π

3
gβγNh̄|ϕsN(RN)|2

)
︸ ︷︷ ︸

constant

ρN
ss . (46)

Here |ϕsN(RN)|2 is the density of the s-basis function at the nucleus. This was first
introduced by Pople et al [90] for semi-empirical methods and is consistent with the various
approximations in SDFTB theory [91], e.g. with the one-centre approximation for the spin
polarization.

Extensive tests have been made for molecular and solid-state systems. These show quan-
titative agreement for molecules compared to experimental [90,92–94] and DFT [95,96] data.

Figure 8 shows a scatter-plot comparing DFT and SDFTB data to experiment for 168
protons in molecules containing C, O and N, demonstrating the applicability of the SDFTB
approach. The distribution is centred and the deviations of DFT and SDFTB theory from
experiment are similar. While the standard deviation of DFT from experiment is 0.179 mT,
the standard deviation of SDFTB theory is, at 0.200 mT, of about the same value. This shows
that SDFTB theory, which requires far less computational effort than DFT, provides a viable
alternative to a fully self-consistent DFT calculation of isotropic hyperfine-coupling constants.

This may be further exemplified by means of the molecule depicted in figure 9. Table 1
gives the calculated and measured isotropic hyperfine-coupling constants. While the DFT
calculation of the isotropic hfccs requires about 10 h computer time, only about 10 s are
required with the SDFTB approach to obtain practically the same information.

The SDFTB approach is also capable of calculating isotropic hyperfine-coupling constants
in solid-state systems as demonstrated for the vacancies in silicon and diamond and for a pair
defect in SiC [91].

4.5. NMR

A crucial quantity in NMR spectroscopy is the nuclear magnetic shielding σ ; it describes the
screening of an external magnetic field (H0) at a nucleus N by the electrons. Strictly, it is a
tensorial quantity, relating the external field strength H0 to the induced field Hind at N :

(Hind)m = −
∑
β

σαβ(H0)n

with the Cartesian components m, n of the vectors. Use of density-functional-based schemes
for magnetic properties requires some justification, as the Hohenberg–Kohn theorem does not
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Figure 8. A plot of the deviations of DFT and SDFTB with respect to experimental data. Ideal
agreement between experimental and calculated data would result in all points being at 0 mT [91].
Reproduced with permission of the PCCP Owner Societies.
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Figure 9. Atomic positions in a stilbene radical anion. For the isotropic hfccs see table 1. Hydrogen
is white, carbon dark [91]. Reproduced with permission of the PCCP Owner Societies.
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include vector potentials. Rajagopal and Callaway [97] proposed a relativistic generalized
Hohenberg–Kohn theorem in terms of the 4-current density which leads to corresponding KS
equations [98], and an expression for the nuclear magnetic shielding at point (nucleus N )
in terms of the magnetic field derivative of the current density at that point can be derived.
With some approximations [99, 100], the normal Rayleigh–Schrödinger expressions for the
shielding can be recovered.

A perennial problem with calculation of magnetic properties is that of gauge origin. Given
a choice of origin, the shielding splits into a sum of diamagnetic (expectation value) and
paramagnetic (perturbed) contributions. Although in an infinite basis their sum is invariant, it
can show strong dependence on the origin in a limited basis set. The solution that we adopted
for diamagnetic molecules is the IGLO (individual gauge local orbitals) approach [101, 102]
where the occupied molecular orbitals are first transformed to localized functions and for each
LMO the centroid of charge is taken as the origin of vector potential. This choice has the
advantage of reducing the magnitude of the paramagnetic contribution and hence minimizing
sensitivity to the basis in the final computed result.

As an example for the application, the calculated structures of the stable isomers of the
odd-membered fullerene C119 and the calculated 13C NMR pattern of these structures are shown
in figure 10 together with the experimental 13C NMR spectrum [103]. The calculated pattern
of the isomer A has a close match with the measured spectrum, whereas the patterns of the
other isomers are considerably different i.e., the calculations can identify the isomer A as the
species obtained experimentally by Gromov et al [103].

For a more detailed discussion, see [104]. Further practical realizations and applications
are described in e.g. [105].

4.6. Scanning probe images, STM

Within the DFTB formalism the spatial charge-density distributions are explicitly available
from the wavefunctions in real space. Plots of the charge density may be used in the analysis
of surfaces and planar molecules to qualitatively reproduce the imaging process in scanning
tunnelling microscopy (STM) [106]. This provides a coupling of the theoretical models to
an experimental technique capable of resolving the atomic structure of surfaces on the same
length scale as theory.

In the limit of an infinitesimally small tip, the tunnelling current I is proportional to the
local density of states at the Fermi energy EF , as shown by Tersoff and Hamann [107]:

I ∝ n(r, EF ) =
∑
i

|ψi(r)|2δ(εi − EF ). (47)

By integration of the LDOS over an energy interval (E) = (εmin · · · εmax)we obtain the spatial
charge density as a sum over eigenstates:

n(r) =
∫
(E)

n(r, E) =
∑
isurf

ni |ψisurf (r)|2. (48)

In the context of STM, only states near the highest occupied and lowest unoccupied molecular
orbitals (HOMO and LUMO) are relevant, given by the index set isurf . Surface states may be
identified using a layer-by-layer analysis of Mulliken charges. Another restriction on the index
set is that subsets of degenerate states, recognizable by computationally equal eigenvalues, must
be included in their entirety in order to fully represent the symmetry group of the wavefunction.
To obtain images, the charge density is plotted logarithmically on a plane parallel to the surface
or planar molecule, separated from the surface by about an ångström.
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Figure 10. Optimized structures of eight isomers of C119 (A–H, left panel) and the 13C NMR
pattern of these isomers [104].

The formalism above was applied first to diamond surfaces [108, 109], where it became
evident that surface charge densities from clean and hydrogenated diamond surfaces differ
significantly due to the disappearance of true surface states upon hydrogen saturation;
see figure 11. Another application was to small organic molecules [110, 111], deposited
on conducting substrates such as graphite. In these situations, the HOMO and LUMO often
show different morphologies, which help to identify the molecules.
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(a)

(b)

Figure 11. Surface charge density for the C(100)-(2×1) reconstruction indicating the influence of
hydrogen termination. Height: 1.3 Å above topmost C atoms. Area: 10.6 Å × 8.5 Å. (a) Clean
reconstruction, orbital one below HOMO. (b) Hydrogenated reconstruction, LUMO. The black
lines indicate a dimer bonded to the first C subsurface layer. Positions of atoms in the layers closest
to the cutting plane are marked. The white line indicates the position selected for vertical cuts;
see [109].

4.7. Green function approach to transport properties

A recent area of interest is the study of the electronic properties of nanotechnological devices
based on organic–inorganic materials. The description of the device properties requires exact
boundary conditions. The Green function (GF) technique [112] allows an exact coupling
between a molecule and semi-infinite leads. A schematic diagram of the device is shown
in figure 12. It consists of a central molecule, designated M , and a number of contacts
µ = α, β, . . .. The retarded Green function GR(E) of such a system is defined as

GR(E) = lim
η→0
(ES− H + iη)−1. (49)
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Figure 12. A schematic diagram of the device consisting of a molecule and two contacts, α and β.

Within a real-space basis, the Hamiltonian and overlap matrices separate into block-matrix
form [113, 114]:

H =
( Hα TαM 0

TMα HM TMβ
0 TβM Hβ

)

S =
( Sα SαM 0

SMα SM SMβ
0 SβM Sβ

)
.

(50)

The submatrices allow us to calculate separate GFs for the molecule and the contacts. For an
isolated contact the GF reads

gµ(E) = lim
η→0
(ESµ − Hµ + iη)−1. (51)

The contact can be thought of as a semi-infinite repetition of so-called principal layers (PLs). A
PL is a repetition unit which is thick enough that only nearest-neighbour PLs interact. From the
intra-layer and inter-layer Hamiltonians and overlap matrix elements, the gµ can be calculated
exactly in a fast iteration scheme known as the decimation technique [115]. This technique
takes into account all interactions between 2n PLs in the nth iteration step.

The GF of the molecule, GM , is coupled to those of the contacts, gµ by the self-energy
operators Cµ(E), which are defined by the contact GF and the contact–molecule coupling
submatrices TMµ and SMµ:

Cµ = (ESMµ − TMµ)gµ(ESµM − TµM). (52)

With the self-energy operators, the GF of the molecule is

GM = (ESM − HM −Cα −Cβ)−1. (53)

Finally, the transmission coefficient can be calculated [116] as

T (E) = Tr(ΓαGMΓβG†
M), (54)

where Γµ are the spectral functions of the self-energy operators:

Γµ = i(Cµ −C†
µ). (55)

As an example for an application to transport properties within the new implementation we
show the calculation of the current in a nanotube-based field-effect transistor (FET). The atomic
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Figure 13. A schematic drawing of a fluorinated carbon nanotube-based field-effect transistor
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Figure 14. Calculated drain current as a function of the gate bias for two drain biases in the
fluorinated carbon nanotube FET.

structure of the simulated device is shown in figure 13. We use a fluorinated nanotube [117] to
connect the source and drain contacts. As in a conventional FET, the current is modulated by the
gate electrode. Similar devices, with carbon nanotubes, have been investigated experimentally
by several authors [118–121]. The calculated drain–source current as a function of the gate
bias is shown in figure 14. For a given drain bias the device presents two distinct regions
separated by zero bias voltage. For negative gate bias the current reaches a positive saturation
value while for positive gate bias it approaches zero. At VGS = 2 V the current is essentially
negligible and we can consider the ‘channel’ of the FET as being pinched off. On reducing
the drain bias the current also diminishes. Indeed, we observe an almost linear dependence
of IDS in the saturation region as a function of VDS. We should point out that the results
shown are in good agreement with those reported in [121]. Summarizing, we have shown that
density-functional-based tight-binding methods can be efficiently coupled to Green function
techniques in order to account for current flow in nanoscale structures.
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Figure 15. The calculated σ(ω) dependence for liquid NaxSn1−x , x = 0.2.

(This figure is in colour only in the electronic version)

4.8. Conductivity

Within the Kubo–Greenwood (KG) theory [122] the electrical (AC) conductivity can be
calculated as

σ(ω) = 2πe2

3m2
eωD

occ∑
i

unocc∑
j

∑
α

|〈ψi |p̂m|ψj 〉|2δ(εj − εi − h̄ω), (56)

where me and e are the electronic mass and charge, respectively, D is the MD cell volume
and p̂m is the m-component of the momentum operator. The sum over i and j runs over
occupied and unoccupied states, respectively—corresponding to the one-particle eigenvalues
(from the Kohn–Sham equation) εi and εj as well as the one-particle wavefunctions ψi and
ψj , respectively.

This formula may be compared with the ‘joint density of states’ with ‘weight factors’
|〈ψi |p̂m|ψj 〉|2 for each contribution.

The combination of the KG formalism with MD allows the calculation of the electric
conductivity in rather complex disordered systems—e.g. liquids—at finite temperatures. To
obtain the conductivity from MD simulations, one has to averageσ(ω) over the whole trajectory
of a MD run—in a similar manner as for structure factors, for example [123]. By this procedure
the effects of the ionic motion on the conductivity are implicitly considered. Finally, the
extrapolation ω→ 0 gives the DC conductivity.

We have implemented the KG formalism in our DFTB scheme and applied it as an example
for the calculation of the concentration dependence in liquid Zintl alloys [123]. Within our
DFTB scheme the calculations with the KG formula can be performed very quickly. Thus
we were able to show that it is sufficient to take into account just a limited number of
configurations. To obtain the DC conductivity, an extrapolation ω → 0 of σ(ω) had to be
performed. As to illustration, the calculated σ(ω) dependence for liquid NaxSn1−x , x = 0.2,
is shown in figure 15.

The calculated DC resistivities from the DFTB calculation for the liquid NaSn system as a
function of the composition are summarized in table 2, in comparison to experimental as well
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Table 2. Resistivities of NaSn alloys with different compositions, in µD cm.

% Na Experiment [124] ab initio calculation DFTB calculation

20 110± 0.2 227± 50 230± 80
40 274± 1 312± 80 400± 100
50 426± 5 383± 80 800± 200
57 658± 10 869± 90 850± 200
80 426± 5 408± 100 180± 100

as ab initio data [10,123]. As can be seen, the DFTB calculations agree qualitatively with the
experimental and the ab initio data and they describe the concentration dependence correctly.

5. Summary

The present article summarizes the current status of development and application within the
DFTB method. This approximate but still predictive scheme allows one to perform electronic
structure calculations on large-scale systems which cannot be handled with ab initio or first-
principles methods. Special emphasis was laid on the description of excited states. Here we
adapt recent extensions of the standard DFT methodology to our scheme by taking advantage
of the typical DFTB kind of approximation in order to increase numerical efficiency. Within
the regime of linear response this opens up the possibility of calculating optical spectra of
technologically relevant materials, while for high intensity of the external fields, information
related to the active field of pump–probe spectroscopy may be obtained.

In addition, the DFTB approach may be used to calculate a variety of different material
properties, which are directly accessible by experiment. On the one hand, it is therefore
possible to validate the quality of the theoretical data and, on the other hand, theory may assist
in the interpretation of experimental results or predict new phenomena. As an example, from
section 4.1, comparison of theoretical and experimental IR intensities leads to a microscopic
understanding of the chemical bonding situation in amorphous films, whereas in section 4.5
it was shown how calculated NMR patterns helped to identify the dominant isomer of the
fullerene C119.

Together with this strong link to experiment and our efforts to cope with larger and
larger system sizes, we hope that the DFTB approach provides a method for tackling the
new challenges in nanoscale materials science.
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[117] Seifert G, Köhler T and Frauenheim T 2000 Appl. Phys. Lett. 77 1313
[118] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Georliga L J and Dekker C 1997 Nature 386 474
[119] Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A and Smalley R E 1997 Science 275

1922
[120] Tans S J, Verschueren A R M and Dekker C 1998 Nature 396 49
[121] Martel R, Schmidt T, Shea H R, Hertel T and Avouris P 1998 Appl. Phys. Lett. 73 2447
[122] Economou E N 1983 Green Functions in Quantum Physics vol 7 (Heidelberg: Springer)

Economou E N 2000 Phys. Rev. B 61 13 659
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